AUTHOR BLOG: Tell me a story! A plea for more compelling conference presentations

Kathryn Langin

Linked paper: Tell me a story! A plea for more compelling conference presentations by K.M. Langin, The Condor: Ornithological Applications 119:2, May 2017.

At one point during last year’s North American Ornithological Conference, I found myself rushing down the hallways to catch a talk by a senior scientist whose research I have long admired. As I took my seat and he began speaking, I was immediately struck with the thought: “Darn, why did I make this mistake again?”

My mistake? Deciding to attend his talk and, in the process, failing to remember that I loathe his presentation style. The slides are always filled to the brim with volumes of text and a seemingly endless number of teeny-tiny figures. And despite going through them at a sprinter’s pace, he somehow fails to finish in the allotted fifteen minutes. It happens every time. The audience experience is akin to watching an action-packed commercial but, in the end, having only a vague sense of what was being advertised.

That incident and many others propelled me to write the Commentary “Tell me a story! A plea for more compelling conference presentations,” published this week in The Condor: Ornithological Applications. In it, I argue that scientists should spend less time trying to impress their audience with mountains of data and more time implementing principles of good storytelling. I know this probably elicits a negative reaction in some readers, but hear me out.

Stories aren’t a mode of communication restricted to fictional tales. They are the most effective way to package information so that others can process and remember it (which is really the whole point of communication, right?). It’s difficult to recall a series of random facts; it’s much easier to recall the details of an engaging story.

The nice thing about storytelling is that it is a natural fit for the scientific process. Dr. Randy Olson, author of the book Houston, We Have a Narrative: Why Science Needs Story, defines a story as “a series of events that happen along the way in the search for a solution to a problem.” Sound familiar? As scientists, we are always in hot pursuit of a solution to a problem, but unfortunately we don’t always present our research that way.

So how can we change that? For starters, it’s not sufficient to package information in a logical order with a beginning (introduction), middle (methods and results), and end (conclusions). That’s obviously helpful, but I argue in the paper that you need to go a step further and develop a compelling plot—something that compels your audience to follow along with your journey of discovery. That can be accomplished by clearly articulating a problem to be solved and spending time convincing the audience why they should care about the problem in the first place.

In his book, Dr. Olson outlines a strategy that I find particularly helpful. He suggests framing your story’s plot by proclaiming something that scientists know and something else that scientists know, but then pointing out a critical unsolved problem or point of debate that, therefore, highlights a need for your particular study. He calls this his “and, but, therefore” template, which contrasts with the template used by many scientists: one that strings along a series of facts with “and, and, and” statements. There’s no drama in “and, and, and” statements, but there is with the “and, but, therefore” framework.

A key advantage of Dr. Olson’s approach is that—by setting the stage in an informative and captivating manner—you can bring your entire audience with you on your journey, not just the people who already understand and appreciate your field and study system. And that should be the ultimate goal: to engage the widest fraction of your audience as possible.

The ornithological community is doing important and interesting science, but we don’t always do a great job communicating it, even amongst ourselves. In my paper, I argue for more storytelling, but I also discuss a greater range of strategies for giving effective presentations, including the benefits of visually-engaging slides. I don’t expect everyone to agree with me, but it is my hope that this opinion piece will generate thought and discussion about how to best communicate our science. We can’t afford to let important research be lost in a sea of ineffective communication.

Tracking Devices Reduce Warblers’ Chances of Returning from Migration

CONDOR-16-180 T Boves

Geolocators like this one provide valuable data on bird migration but can also impact the birds that carry them. Photo credit: T. Boves

The tools ornithologists use to track the journeys of migrating birds provide invaluable insights that can help halt the declines of vulnerable species. However, a new study from The Condor: Ornithological Applications shows that these data come at a cost—in some cases, these tracking devices reduce the chances that the birds carrying them will ever make it back to their breeding grounds.

Geolocators are small devices attached to birds that record light levels over time, which can be used to determine location. They’re widely used to study migration patterns, but studies have suggested that some species may be negatively affected by carrying them. Douglas Raybuck of Arkansas State University and his colleagues monitored male Cerulean Warblers with and without geolocators to see how they fared, and they found that while geolocators had no effect on the birds’ nesting success in the same season following their capture, birds with geolocators were less likely to reappear on their territories after migration the next year—16% of geolocator-tagged birds returned from migration, versus 35% of the birds in the control group.

The data gained from geolocator studies are enormously useful for bird conservation, and on a global scale those benefits are likely to outweigh potential the costs. The results from this study suggest that the potential impacts of individual research projects need to be carefully evaluated, but we should remember that only a small number of birds are ever tagged relative to the total size of the population under study.

The researchers captured Cerulean Warblers in Pennsylvania, Missouri, and Arkansas by luring them into nets using call recordings and wooden decoys. Outfitting some with geolocators but others with only identifying color bands, they monitored the birds’ nests and then searched for them the following year to determine whether they’d returned. “Re-sighting males and identifying their unique color-band combinations as they moved about in the canopy was not always easy, but our dedicated and skilled field crew did a fantastic job of overcoming these obstacles, which were compounded by inclement weather and the rugged topography of the sites,” says Raybuck.

“New technologies such as geolocators and automated radiotracking arrays have led to a surge in new tagging studies of migratory songbirds,” according to York University’s Bridget Stutchbury, an expert on geolocators and the conservation biology of North America’s migratory songbirds. “Finding that tagged birds were far less likely to return the next year compared with un-tagged birds puts researchers in a serious dilemma, because despite the potential costs of tagging small birds, long-distance tracking is essential to find out which wintering and migratory stopover sites should be highest priority for conservation.”

Mixed effects of geolocators on reproduction and survival of Cerulean Warblers, a canopy-dwelling, long-distance migrant is available at http://americanornithologypubs.org/doi/full/10.1650/CONDOR-16-180.1.

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology. It began in 1899 as the journal of the Cooper Ornithological Club, a group of ornithologists in California that became the Cooper Ornithological Society, which merged with the American Ornithologists’ Union in 2016 to become the American Ornithological Society.

Read More:

Review Highlights Challenges Faced by Birds in the Gulf of Mexico

CONDOR-17-20 A McBride

More research is needed on the challenges faced by birds migrating through the Gulf of Mexico. Image credit: A. McBride

The Gulf of Mexico is hugely important to birds that migrate between North America and the Neotropics—almost all migrants have to go around it or across it. Coastal habitats around the Gulf of Mexico are critical for these migrating birds, but these habitats face more and more threats from human activity. A new Review in The Condor: Ornithological Applications brings together what we know—and don’t know—about the state of the region’s ecosystems and the birds that pass through them.

Understanding the population impacts of events during migration requires knowing which species are using what coastal habitats, how good those habitats are, where the birds are coming from, and where they’re going. Birds use a variety of coastal habitats, from vast tracts of hardwood forests to patches of vegetation embedded in agricultural or urban areas. The amount of food present in these areas, the intensity of competition for that food, and the danger from predators all shape how well a certain spot can meet a migrating bird’s needs. Threats to birds passing through the Gulf of Mexico include coastal habitat loss from forest clearing, wetland filling and dredging, and shoreline hardening; tall structures like cell phone towers and wind turbines; and, of course, climate change.

More data is needed in all of these subjects. Today the Gulf of Mexico Avian Monitoring Network is taking on the enormous task of coordinating monitoring across the region by integrating the efforts of multiple organizations and agencies. Doing this well will require close cooperation between the United States, Mexico, and Caribbean countries.

“Many migratory bird species are declining, including the species that breed in our backyards every summer, and we’re trying to understand if events that occur during migration might impact birds here on the breeding grounds. Our focus is the Gulf of Mexico region because it’s a bottleneck for migratory land birds—a place they have to move through every spring and fall,” says the Smithsonian Conservation Biology Institute’s Emily Cohen, the lead author of the Review. “Birds use these coastal habitats twice a year to eat and rest before and after their spectacular non-stop flight across the Gulf, which can take up to twenty hours! What’s going on during these migratory journeys is the final frontier for bird biology, and many new tools are making it possible to solve the mysteries of migration that previously limited our ability to develop conservation priorities.”

“This Review highlights the tremendous importance of the Gulf of Mexico to migratory birds, not only from an ecological and conservation perspective, but also as an opportunity to understand mechanisms that drive the evolution of migration across dozens of families,” according to Erik Johnson of Audubon Louisiana, an expert on bird conservation in the region. “As this paper makes clear, preserving this landscape is a tremendous responsibility shared across multiple countries, and our collective success has implications for how our descendants across North America will experience the amazing phenomenon of bird migration.”

How do en route events around the Gulf of Mexico influence migratory landbird populations? is available at http://americanornithologypubs.org/doi/full/10.1650/CONDOR-17-20.1.

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology. It began in 1899 as the journal of the Cooper Ornithological Club, a group of ornithologists in California that became the Cooper Ornithological Society, which merged with the American Ornithologists’ Union in 2016 to become the American Ornithological Society.

Under-Studied Boreal Habitat Key for North America’s Ducks

CONDOR-16-179 M Carriere

Researchers used ducks harvested by hunters to learn new details about waterfowl migration. Photo credit: M. Carriere

Knowing where migrating birds came from and where they’re headed is essential for their conservation and management. For ducks, most of this information comes from long-term bird-banding programs, but this type of research has limits—despite all the birds harvested by hunters, only a small percentage of banded birds are ever recovered. A new study from The Condor: Ornithological Applications takes on the challenge of gaining information from unbanded birds by using stable isotope ratios, which reflect where birds were living while growing their feathers. These results reveal that the northern reaches of Canada may have underappreciated importance for North America’s waterfowl.

Canada’s Saskatchewan River Delta is North America’s largest inland delta and is a key stopover site for migrating ducks. To learn more about the origins of ducks using delta habitat, Christian Asante of the University of Saskatchewan, Keith Hobson of the University of Western Ontario, and their colleagues analyzed the isotopes in feather samples from 236 ducks from five species, all harvested by hunters in the region during migration in 2013 and 2014. Hydrogen and sulfur isotope ratios give scientists different information—hydrogen isotope ratios vary predictably with latitude, while sulfur isotope ratios reflect the type of food a bird eats and underlying geology—but together they indicated that as many as half the ducks using the delta during migration originated in the vast and nearly inaccessible areas of boreal forest and wetlands to the north.

The research required close collaboration with the area’s hunters. “Working on this project was a great experience,” says local community member Michela Carriere, who was hired to do the field work for the study. “I spent a few weeks collecting samples from the ducks and getting to know the hunters and the guides. Twice a day a load of ducks would come in and I would collect samples and label and package them, plucking feathers and extracting tissues. The hardest part was the labeling, which has to be done meticulously. I would spend hours each day collecting and organizing the samples.”

The results show that the boreal habitat’s contribution to North America’s waterfowl populations, though poorly documented, may be crucial. This region faces increasing threats from climate change and other factors, and isotopic monitoring offers a new means of tracking the effects on birds. “Our study is important for two reasons,” says Hobson. “First, it demonstrates clearly that the delta is a major fall refueling station for birds breeding in the north. Second, it shows once again how origins and regions of productivity can be determined using the simple isotope approach with feathers from hunter-killed birds. This major potential tool in waterfowl management has been largely overlooked in North America for too long.”

Tracing origins of waterfowl using the Saskatchewan River Delta: Incorporating stable isotope approaches in continent-wide waterfowl management and conservation is available at http://americanornithologypubs.org/doi/abs/10.1650/CONDOR-16-179.1.

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology. It began in 1899 as the journal of the Cooper Ornithological Club, a group of ornithologists in California that became the Cooper Ornithological Society, which merged with the American Ornithologists’ Union in 2016 to become the American Ornithological Society.

AUTHOR BLOG: Tracking Semipalmated Sandpiper Migration

SESA-NomeAK-Bwinn (3)

Photo credit: B. Winn

Stephen Brown

Linked paper: Migratory connectivity of Semipalmated Sandpipers and implications for conservation by S. Brown, C. Gratto-Trevor, R. Porter, E.L. Weiser, D. Mizrahi, R. Bentzen, M. Boldenow, R. Clay, S. Freeman, M.-A. Giroux, E. Kwon, D.B. Lank, N. Lecomte, J. Liebezeit, V. Loverti, J. Rausch, B.K. Sandercock, S. Schulte, P. Smith, A. Taylor, B. Winn, S. Yezerinac, and R.B. Lanctot, The Condor: Ornithological Applications 119:2, May 2017.

The Semipalmated Sandpiper (Calidris pusilla) is a small shorebird, most commonly seen on migration along the coastlines of the eastern United States. It is historically one of the most widespread and numerous shorebird species in the Western Hemisphere, breeding across the North American Arctic tundra, but major population declines have been documented in the core of the nonbreeding range in northern South America. Breeding populations have also declined in the eastern North American Arctic, but appear to be stable or increasing in the central and western Arctic. To help understand what is causing the declines and work toward conservation of this species, we set out to track migration routes and stopover sites using light-level geolocators, a relatively new technology which determines the bird’s position on earth by measuring the length and timing of daylight throughout the year. The major challenge to using these tags is that you have to catch the bird once to put on the geolocator and then again the next year to retrieve it, which requires finding the same bird again in the vast arctic tundra. Luckily, they tend to return to the same breeding areas the next year.

Our large group of 18 partner organizations worked collaboratively to carry out the study across the entire North American Arctic from Nome, Alaska, to Hudson Bay, and we attached 250 geolocators to birds by mounting expeditions to 8 different field sites. Our field crews faced challenging conditions, working in the Arctic where the weather is always unpredictable and where both grizzly bears and polar bears regularly visit field sites. We repeated expeditions the next year to each site, and recovered 59 of the units by recapturing birds. The treasure trove of data showed migration routes and stopover sites from the entire year in the life of each bird, and showed that birds breeding in the eastern Arctic wintered in northeastern South America. Birds from eastern Alaska and far western Canada wintered from Venezuela to French Guiana. Central Alaskan breeders wintered across a very wide range from Ecuador to French Guiana. Birds that bred in western Alaska wintered mainly on the west coasts of Central America and northwestern South America, outside the nonbreeding region in which population declines have been observed.

Our results confirm that Semipalmated Sandpipers that breed in the eastern Arctic and use the Atlantic Flyway also use the areas in South America where population declines have been detected, suggesting that declines may be concentrated in populations along the Atlantic Flyway and in the eastern Arctic. However, because some birds from sites as far west as Barrow, Alaska, also used the areas in northeastern South America where declines have occurred, further work is needed to localize the geographic areas used by declining populations, and therefore the potential causes for the declines. We identified several new stopover and wintering areas, where implementing conservation actions to preserve the habitats used by Semipalmated Sandpipers could contribute to protecting the species. We measured a larger impact of geolocators on return rates than has been observed for larger shorebirds, indicating that caution should be used when working with small shorebirds, and that potential new information gains from additional geolocator studies should be weighed against expected impacts on individual survival. Our data also provided new insights about how long birds stay at migration stopover sites, which will be useful to studies that measure and monitor the total size of populations using these sites. Understanding the connections between breeding, migration, and wintering areas for these populations of a widespread yet declining shorebird can help future studies identify the causes of declines and ensure the effectiveness of targeted conservation efforts.

Sandpiper Detectives Pinpoint Trouble Spots in Continent-Wide Migration

CONDOR-16-55 B Winn

A Semipalmated Sandpiper wearing a geolocator. Photo credit: B. Winn

Understanding and managing migratory animal populations requires knowing what’s going on with them during all stages of their annual cycle—and how those stages affect each other. The annual cycle can be especially difficult to study for species that breed in the Arctic and winter in South America. A new study from The Condor: Ornithological Applications tackles this problem for Semipalmated Sandpipers, historically one of the most widespread and numerous shorebird species of the Western Hemisphere, whose populations in some areas have undergone mysterious declines in recent years.

Stephen Brown, Vice President of Shorebird Conservation for Manomet, assembled a large group of partner organizations to deploy 250 geolocators, tiny devices that use light levels to determine birds’ locations, on adult sandpipers at sites across their breeding range in the North American Arctic. Recapturing 59 of the birds after a year to download their data, they found that the eastern and western breeding populations use separate wintering areas and migration routes. Birds that breed in the eastern Arctic overwinter in areas of South America where large declines have been observed. The researchers believe these declines are tied to hunting on the wintering grounds and habitat alteration at migration stopover sites, although their precise impacts remain unclear.

“This study was a response to the discovery of a large decline in the population of Semipalmated Sandpipers in the core of their wintering area in South America, and the need to determine which birds were involved. We didn’t know if the decline affected the entire population or just part of it,” says Brown. “Bringing together the 18 partner organizations that worked collaboratively on this project allowed us to track the migration pathways used by Semipalmated Sandpipers at the enormous geographical scale of their entire North American Arctic breeding range and provided critical new information about what sites are important to protect to support their recovery.”

“The authors here present one of the few studies that examine year-round connectivity, including stopover sites, of Arctic-breeding shorebirds,” according to the University of Guelph’s Ryan Norris, an expert on migration tracking who was not involved with the study. “Multi-site, range-wide studies on connectivity, such as this, are critical if we are to understand the population consequences of environmental change in migratory birds.”

Migratory connectivity of Semipalmated Sandpipers and implications for conservation is available at http://americanornithologypubs.org/doi/full/10.1650/CONDOR-16-55.1.

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology. It began in 1899 as the journal of the Cooper Ornithological Club, a group of ornithologists in California that became the Cooper Ornithological Society, which merged with the American Ornithologists’ Union in 2016 to become the American Ornithological Society.

About Manomet: Manomet is a nonprofit organization that believes people can live and work today in ways that will enable our world to thrive and prosper tomorrow. Manomet’s mission: applying science and engaging people to sustain our world. Visit www.manomet.org for more information.

Read more:

How Reliable Are Traditional Wildlife Surveys?

CONDOR-16-137 T Cacek

A Sandhill Crane from the Rocky Mountain population. Photo credit: T. Cacek

To effectively manage a wildlife species, one of the most basic things you need to know is how many of them are out there. However, it’s almost never feasible to count every single individual—so how do the results of wildlife surveys compare to true population size? A new study in The Condor: Ornithological Applications tests this using the results of more than thirty years of surveys of the Rocky Mountain population of Sandhill Cranes.

A three-year “moving average” is often used to smooth out year-to-year irregularities in survey results, but this approach has never been evaluated. Brian Gerber of Colorado State University and William Kendall of the U. S. Geological Survey assessed whether the annual population changes reported by these moving averages were realistic, based on what is known about crane demographics, and how they compared to the results of a more sophisticated statistical approach called a hierarchical Bayesian time series model. They found that while the moving average population estimates were reasonable, the more complex method performed better over a large number of scenarios.

Bayesian approaches offer a structured way to incorporate new information as it becomes available. “The model-based approach we looked at is very flexible and has some major advantages over other methods,” says Gerber. “By taking a Bayesian approach, we can include additional information about both the observation process and the true population to obtain more realistic estimates and predictions. Also, the model-based approach includes measures of uncertainty about our population estimates, which are not usually provided by more common approaches and are crucial for understanding the level of confidence we have about our estimates.”

Evidence suggests that management practices over the last twenty years have largely met the annual population objectives for the Rocky Mountain Sandhill Crane population. “Looking forward,” adds Gerber, “managers may still be interested in adopting our more robust modeling approach due to its flexible framework, which makes implementing any changes relevant to the survey easier.” The investment in collecting these long-term data may pay off not just for crane management, but for an advance in methods that can be applied to other species as well.

Evaluating and improving count-based population inference: A case study from 31 years of monitoring Sandhill Cranes is available at http://americanornithologypubs.org/doi/full/10.1650/CONDOR-16-137.1.

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology. It began in 1899 as the journal of the Cooper Ornithological Club, a group of ornithologists in California that became the Cooper Ornithological Society, which merged with the American Ornithologists’ Union in 2016 to become the American Ornithological Society.