AUTHOR BLOG: Not Too Many Sperm, Not Too Few

MaleZB and LTF

Male Zebra Finch and Long-tailed Finch. Photo credit: L. Hurley

 

Laura Hurley

Linked paper: Variation in the number of sperm trapped on the perivitelline layer of the egg in three species of estrildid finch by L.L. Hurley, K.V. Fanson, and S.C. Griffith, The Auk: Ornithological Advances 119:4, October 2017.

When you crack open your morning egg, you see the familiar yolk with its little white circle staring at you. That little white circle, the germinal disk, is the target sperm are aiming for to fertilize the big yolky ovum, but in birds one sperm is not enough to turn the egg into a chick. Multiple sperm must fuse with the ovum for this to happen, so lots of sperm are present at fertilization, and those that don’t fuse can become trapped between the two delicate layers that surround the yolk.

Hope I didn’t ruin breakfast for you. However, too many sperm reaching the egg can cause the development of the chick to fail, so there’s a bit of a Goldilocks situation—just the just right number of sperm are needed. The size of bird eggs vary widely—from hummingbirds to emus—and so does the number of sperm that reach their ovum. In general, the number of sperm varies with body size, but there is a lot of unexplained variation between species of similar size, within species, and even within a clutch of eggs. In our current paper, we explore variation in three similarly sized birds from a family of Australian finches to help us better hypothesize about what could be influencing sperm numbers.

This is part of a larger body of avian ecology work looking at how genetic, social, and environmental factors influence and regulate reproduction, development, and population dynamics (https://griffithecology.com). This work involves a number of Australian species in both wild and captive settings, including Gouldian Finch, Zebra Finch, Long-tailed Finch, and Chestnut-crowned Babbler, as well as the invasive House Sparrow. We also use historical records to build models to help us understand the life history of birds across the whole of Australia—for example, opportunistic breeding (https://doi.org/10.1642/AUK-16-243.1) and nest structure (https://doi.org/10.1098/rspb.2016.2708).

AUTHOR BLOG: Tracking the Preen Gland Over Time

UNI Bielefeld

Researchers tracked changes in Zebra Finches’ preen glands during breeding to glean new insights about the gland’s function.

 

Sarah Golüke

Linked paper: Sex-specific differences in preen gland size of Zebra Finches during the course of breeding by S. Golüke and B.A. Caspers, The Auk: Ornithological Advances 119:4, October 2017.

Almost all birds possess a preen gland that produces a waxy secretion used by birds for feather maintenance. Several studies have found that the preen gland is enlarged during breeding, but it is currently not clear why.

We investigated the temporal pattern of gland size changes during breeding in a captive population of domesticated zebra finches. Zebra finches are small passerines, only weighing 13 grams on average, and the gland is therefore quite small. Additionally, the gland itself is really flexible, and measuring the gland manually with a caliper is therefore quite challenging and error-prone. So, how to measure precisely this flexible, heart-shaped gland in such small birds?

We took pictures of preen glands and calculated the gland surface area using digital picture analysis. This method worked out well, and we started to investigate gland size changes over the breeding period. We measured preen gland sizes of breeding pairs at key points that are relevant during the reproductive period, such as pre-mating, egg laying, hatching, rearing and independence of the chicks.

We found that gland sized increased in both parents—that is, they produced more secretion—during breeding. The maximum size of the gland was reached around the time the chicks hatch. We assume that the need for secretions is highest at this point. After breeding, the gland size was similar to what it was before the reproductive season, indicating that the size increase is due to breeding. Similarly, at the same time, non-reproducing birds showed no size increase.

More specifically, our results show that the temporal pattern of gland size increase differs for males and females, with males already enlarging the gland around the time of egg-laying, while females start increasing the gland size later.

Knowing the temporal pattern of preen gland size enlargement of males and females allows us to think about different factors that might explain the enlargement pattern we observed. First, an investment in gland secretions might reduce the odor of the birds inside the nest, which is advantageous against olfactory-hunting predators. Second, in a breeding-related context, the ingredients of preen gland secretions might be necessary for self-protection and/or to protect offspring against harmful microbes. The nest is an ideal environment for microbial growth, which could reduce plumage condition and health and could further impact egg viability and hatching success. There is evidence that transferring gland secretions to the plumage and onto eggs or offspring might reduce harmful microbes. Third, there might be a different need for chemical communication during breeding. As the gland secretions are spread on the plumage during preening, they might be an essential contribution to a bird’s body odor. In our group, we are especially interested in the role of odors for social communication.

AUTHOR BLOG: Tracking Yosemite’s Spotted Owls

_MG_8939 (2)

Tracking Spotted Owls in Yosemite National Park. Photo credit: S. Scherbinski

Stephanie Eyes

Linked paper: California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape by S.A. Eyes, S.L. Roberts, and M.D. Johnson, The Condor: Ornithological Applications 119:3, August 2017.

In 2005, I happily discovered the Student Conservation Association and that I could be an intern studying California Spotted Owls in Yosemite National Park. I accepted the internship and worked on a PhD student’s project investigating the effects of fire on California Spotted Owl occupancy. The final results from this study revealed that owl occupancy rates were similar between burned and unburned forest, but led to questions about how owls use the mosaic of post-fire patches. In 2010, the former PhD student, my graduate advisor, and I began our efforts to understand this question by capturing owls and affixing radio transmitters to them with the help of several technicians over the course of the three field seasons. By attaching a radio transmitter, we were able to use radio telemetry to triangulate the position of owls during nocturnal foraging bouts. Specifically, we wanted to know how owl foraging patterns are influenced by fire severity, fire-created edges, and other factors such as topography or distance to stream or nest/roost site.

After owls were captured, we set up our telemetry stations along the trails and roads surrounding our known owl roost sites. We went out in teams of two, each armed with a headlamp and an antenna, and worked to locate the owls within our burned sites. Once we initially identified that an owl was present with our antenna, we would split up, one person racing ahead so that we could get three different readings within ten minutes, each separated by about 200 meters, before the owl moved to a new foraging site. While I was relatively experienced with daytime radio telemetry, these nocturnal trail surveys posed a new challenge I enjoyed overcoming, and one time we encountered a curious mountain lion also using the trail searching for (I hoped!) something else.

Whenever we surveyed these trail sites, I remember wondering what the owl was hunting in the burned mosaic of forest patches at the moment that we were trying to pinpoint its location. I’m hoping all my wondering what they were eating will encourage me to go through all the pellets we found in burned forests!

After all the data was collected and analyzed, we learned that owls exhibited habitat selection for locations near roosts and edge habitats, as well as weak selection for lower fire severities. Our results highlight the importance of sustaining forests burned with a mosaic of fire severities with smaller patch sizes of high severity fire. Maintaining this complex mosaic of forest patches and focusing on protecting roost site locations may help sustain California Spotted Owls in the greater landscape.

AUTHOR BLOG: ‘Bare Parts’ are an Important but Underappreciated Avian Signal

AUK-16-136

Two female American Goldfinches in an antagonistic interaction. Bill-color, derived from carotenoids, is a signal of dominance among female goldfinches but not among males. Image credit: K. Tarvin

Erik Iverson

Linked paper: The role of bare parts in avian signaling by E.K. Iverson and J. Karubian, The Auk: Ornithological Advances 134:3, July 2017.

Birds are well-known for being among the most colorful of all animals, with many species displaying striking, brightly-colored feathers. Scientists have long wondered why color is so important to fitness, and hundreds of studies have been published on the relationships between plumage and traits such as age, physiological condition, reproductive success, and attractiveness to mates. However, there is a growing awareness that plumage is not the only important site of coloration among birds; there is also considerable variation within and between species in the color of bills and in bare skin such as legs, feet, ceres, or wattles. Yet compared to plumage, these ‘bare part’ ornaments have received relatively little attention; a 2006 review of carotenoid coloration in birds, for instance, identified only 14 studies of bare parts versus 130 studies of plumage.

Unlike plumage, bare part color has the potential to be highly flexible. For example, carotenoid-based bare parts can lose their color within days of food deprivation or within hours of stress. Amidst growing suggestions that changes in bare part color could have important implications for signaling, one of the authors, Jordan Karubian, was studying Red-Backed Fairywrens (Malurus melanocephalus) in Australia. In this species, males either acquire a territory and display black breeding plumage and bills, or stay dull and serve as helpers at the nest. Jordan noticed that when a breeding male died and a dull male took over its vacancy, the dull male’s bill would darken within several weeks. Experiments confirmed this effect and showed that dull males with newly black bills also had testosterone levels comparable to birds with black plumage. I joined Jordan’s lab as an undergraduate and studied fairywrens as well, and when I was looking for a topic for an honors thesis Jordan suggested that bare parts were an expanding area in need of a review. That thesis grew and grew, eventually becoming my master’s work and encompassing 321 published studies of bare-part coloration and signaling.

Our review shows that despite the research focus on plumage, bare part signals might be more common than plumage-based ones and are an important visual signal in many species that lack bright plumage altogether. Carotenoids, melanin, and structural colors are all flexible in bare parts, and rapid blood flushing through skin can change color even more rapidly. Bare part color provides up-to-date information about a signaler, allowing competitors, mates, and offspring to adjust their strategies and maximize their fitness. Carotenoid-signaling with bare parts may also be less costly than with plumage, allowing signaling by females and non-breeding males. In species where both plumage and bare parts of the same color exist, the two are likely to be ‘multiple messages,’ conveying different aspects of condition or targeting different audiences. We believe that more careful and extensive characterization of bare part coloration will contribute greatly to our understanding of this underappreciated dynamic signal, and help inform a more inclusive theory of animal communication.

AUTHOR BLOG: Tell me a story! A plea for more compelling conference presentations

Kathryn Langin

Linked paper: Tell me a story! A plea for more compelling conference presentations by K.M. Langin, The Condor: Ornithological Applications 119:2, May 2017.

At one point during last year’s North American Ornithological Conference, I found myself rushing down the hallways to catch a talk by a senior scientist whose research I have long admired. As I took my seat and he began speaking, I was immediately struck with the thought: “Darn, why did I make this mistake again?”

My mistake? Deciding to attend his talk and, in the process, failing to remember that I loathe his presentation style. The slides are always filled to the brim with volumes of text and a seemingly endless number of teeny-tiny figures. And despite going through them at a sprinter’s pace, he somehow fails to finish in the allotted fifteen minutes. It happens every time. The audience experience is akin to watching an action-packed commercial but, in the end, having only a vague sense of what was being advertised.

That incident and many others propelled me to write the Commentary “Tell me a story! A plea for more compelling conference presentations,” published this week in The Condor: Ornithological Applications. In it, I argue that scientists should spend less time trying to impress their audience with mountains of data and more time implementing principles of good storytelling. I know this probably elicits a negative reaction in some readers, but hear me out.

Stories aren’t a mode of communication restricted to fictional tales. They are the most effective way to package information so that others can process and remember it (which is really the whole point of communication, right?). It’s difficult to recall a series of random facts; it’s much easier to recall the details of an engaging story.

The nice thing about storytelling is that it is a natural fit for the scientific process. Dr. Randy Olson, author of the book Houston, We Have a Narrative: Why Science Needs Story, defines a story as “a series of events that happen along the way in the search for a solution to a problem.” Sound familiar? As scientists, we are always in hot pursuit of a solution to a problem, but unfortunately we don’t always present our research that way.

So how can we change that? For starters, it’s not sufficient to package information in a logical order with a beginning (introduction), middle (methods and results), and end (conclusions). That’s obviously helpful, but I argue in the paper that you need to go a step further and develop a compelling plot—something that compels your audience to follow along with your journey of discovery. That can be accomplished by clearly articulating a problem to be solved and spending time convincing the audience why they should care about the problem in the first place.

In his book, Dr. Olson outlines a strategy that I find particularly helpful. He suggests framing your story’s plot by proclaiming something that scientists know and something else that scientists know, but then pointing out a critical unsolved problem or point of debate that, therefore, highlights a need for your particular study. He calls this his “and, but, therefore” template, which contrasts with the template used by many scientists: one that strings along a series of facts with “and, and, and” statements. There’s no drama in “and, and, and” statements, but there is with the “and, but, therefore” framework.

A key advantage of Dr. Olson’s approach is that—by setting the stage in an informative and captivating manner—you can bring your entire audience with you on your journey, not just the people who already understand and appreciate your field and study system. And that should be the ultimate goal: to engage the widest fraction of your audience as possible.

The ornithological community is doing important and interesting science, but we don’t always do a great job communicating it, even amongst ourselves. In my paper, I argue for more storytelling, but I also discuss a greater range of strategies for giving effective presentations, including the benefits of visually-engaging slides. I don’t expect everyone to agree with me, but it is my hope that this opinion piece will generate thought and discussion about how to best communicate our science. We can’t afford to let important research be lost in a sea of ineffective communication.

AUTHOR BLOG: Common Murre Parenting 101: How to Negotiate for an Easier Job

IMG_3895

Researcher Linda Takahashi observes nesting murres. Photo credit: N. Oberlander

Linda Takahashi

Linked paper: Turn-taking ceremonies in a colonial seabird: Does behavioral variation signal individual condition? by L.S. Takahashi, A.E. Storey, S.I Wilhelm, and C.J. Walsh, The Auk: Ornithological Advances 134:3, July 2017.

When mates share parenting duties, conflict can arise over which one performs the hardest jobs. Common Murres are monogamous long-lived seabirds that raise only one chick each year. Extensive contributions from both parents are obligatory for successful chick fledging: Chicks are rarely abandoned, and murres are great parents. Throughout the three week chick-rearing period, one parent remains at the nest site, brooding and defending the chick, while the other is most often away from the colony foraging.  Murres have the highest wing loading of any flying bird, and so foraging far away from the colony, which is often necessary in years of reduced capelin availability, is energetically costly. Remaining in the colony with the chick is simply the easier job.

All things being equal between the murre parents, we’d expect that they would take turns and share the harder job of chick provisioning. For the most part, this is indeed what they do. One mate returns to the colony with a fish, feeds the chick, and the takes over brooding duties while the former brooder leaves. We called this a regular nest relief. However, some nest reliefs are irregular, such as when the returner comes back without a fish or the brooder doesn’t give up the chick, causing the returner to leave again to forage. We wondered if variation in nest reliefs was related to the relative physiological condition of the partners and whether changes in specific behaviours that occur during the nest relief ceremony were indicators of the partners “negotiating” with each other for the easier parental job.

Until our study, little focus had been given to the often-subtle behaviours shown by murres during nest relief (turn-taking) ceremonies. We looked at 16 pairs of Common Murres breeding in Witless Bay, Newfoundland, Canada, in 2009, a year with particularly low availability of capelin, the preferred forage fish. Pairs were identified by colour bands and nest location on the cliff. From dawn to dusk, we sat in a tiny observation blind and recorded murre behaviors with either a camcorder or an event logger. Specifically, an interaction began when a returning bird arrived at the nest, typically with a fish, and joined its chick-brooding partner, and it ended when one of the pair departed. We noted whether the parents traded roles and recorded their patterns of allopreening and bill-fencing. We also examined the relationships between murre condition—specifically, body mass and lipid metabolite levels (as measured by beta-hydroxybuterate)—and behavioural variation during turn-taking.

We found that irregular turn-taking ceremonies took longer than regular ones and had either delayed or non-synchronous allopreening. When a returning partner came to the nest without a fish, it began allopreening sooner than both the brooding partner and birds that returned with a fish. These “no fish” irregular nest reliefs took the longest of all, and brooders appeared to resist or delay leaving the colony. In cases where there was no exchange of duties, i.e., the brooder remained in the colony, rates of allopreening by the brooder were significantly lower than they were in all other types of turn-taking ceremony. Birds with higher overall chick-feeding rates brought fish on more visits than other birds, suggesting that that they were higher-quality individuals. Furthermore, brooding birds in relatively better condition departed the colony sooner after their mate fed the chick compared to those in relatively worse condition. We suggest that variation in allopreening allows mates to communicate with each other regarding their own condition, and, if that condition is poor, to negotiate for the easier parental duty, i.e., brooding.

Why would murres benefit from responding to signals about their mates’ condition? Since murres typically retain their mates for several years, parental investment theory predicts that it is in an individual’s best interest to preserve their mate’s current and future body condition as well as their own. Deterioration of a mate’s condition could lead to nest abandonment or even compromised survival. This paper shows that variation in ceremonies is one way to make information available to mates. Thus, behavioural variation during the ceremony can signal individual condition and be a means to negotiate parental roles.

AUTHOR BLOG: How the ‘Mitey’ Have Fallen: Impacts of Burrowing Skin Mites on Reproduction of an Urban Raptor

AUK-16-134

Black Sparrowhawks displaying symptoms of mite infection.

Julia L. van Velden

Linked paper: Negative effect of mite (Knemidokoptes) infection on reproductive output in an African raptor by J.L. van Velden, A. Koeslag, O. Curtis, T. Gous, and A. Amar, The Auk: Ornithological Advances 134:3, July 2017.

Parasites were once considered to be one of the less important factors that limit or regulate animal populations, with the impacts of predators and resource limitation previously receiving far more attention. This lack of attention probably stemmed from the mistaken belief that most parasites have evolved not to harm their hosts too much, because if their host dies, they lose the resource they depend on. We now know, however, that parasites can often strongly affect both a host’s reproduction and survival rates. Our new study published in The Auk: Ornithological Advances adds to this knowledge for a relatively understudied parasite in a wild raptor population.

Knemidokoptes mites are a genus of microscopic skin mites which burrow into the skin of birds and cause the “scaly leg” and “scaly face” conditions that are frequently seen in caged and domestic birds. They also occur in some wild species, particularly passerines. However, these parasites have rarely been recorded on raptors, except on captive birds. Additionally, almost no research has been carried out to investigate the impacts of these parasites on species’ fitness. Our study explored the symptoms of infection and the impact these mites have on the breeding performance of a wild population of Black Sparrowhawks in Cape Town, at the southernmost tip of South Africa.

AUK-16-134 2

Knemidokoptes skin mites.

Black Sparrowhawks are a recent colonist to this mostly urban area, and urban living may come with associated changes in exposure to parasites and pathogens. Our study population has been closely monitored since 2001 and has grown steadily over the years, with the population now containing around 50 breeding pairs each year. In 2007, we started to notice birds in the population with strange symptoms, namely balding heads and scaly lesions on their legs. These birds appeared to be agitated and in poor condition. Post-mortem investigations revealed that, in all cases, birds with these symptoms were infected with the burrowing skin mite (Knemidokoptes spp.). We found that in some years, up to 5% of the Cape Peninsula population was infected, which represents a highly novel finding for a wild population of raptors.

Comparing between the sexes, we also found that mite infection was more frequent for males than females. Higher parasitic infection of males has been found for several other studies in different parasites and may be the result of fundamental biological and behavioural differences. In our population, we suspect that Black Sparrowhawks may become infected by these mites from their prey, possibly domestic chickens, which are known to frequently be infected by Knemidokoptes mites. Like most Accipiters, Black Sparrowhawks pluck their prey before consumption, which may mean they have greater exposure to this parasite than other raptor species, and the fact that males are responsible for hunting throughout the breeding season may explain the male bias in infection.

Most importantly, we found that Black Sparrowhawks that were infected with these mites had considerably reduced breeding success. We compared breeding performance between infected and non-infected birds and also between birds pre- and post-infection. These analyses showed that infection reduced breeding performance by over 50%. This could be because adults become too agitated to incubate or hunt effectively following infection.

We also investigated if this infection was present anywhere else in South Africa and found four hotspots of infection. Three of the infection sites were cities, and thus infection by this mite may be associated with urbanization levels and the additional stresses this may incur. Other research has, however, not yet detected any negative effect of urbanisation on this species’ health.

Our study, the first on Knemidokoptes mites within a wild population of raptors, therefore suggests that this parasite could play a role in limiting the breeding performance of infected populations. Although Black Sparrowhawks are not a species of conservation concern, this study provides important information on the negative role such parasites can play in their host’s reproductive success, which will be important if this infection is found to occur in an endangered raptor species.