AUTHOR BLOG: A new hummingbird species in Ecuador

Juan Freile

Linked paper: A striking, critically endangered, new species of hillstar (Trochilidae: Oreotrochilus) from the southwestern Andes of Ecuador by F. Sornoza-Molina, J.F. Freile, J. Nilsson, N. Krabbe, and E. Bonaccorso, The Auk: Ornithological Advances 135:4, October 2018.


Adult male (above left, center right), adult female (below), and immature male (above right) Oreotrochilus cyanolaemus. Image credit: P. Greenfield.

Last year a new hummingbird species was unexpectedly discovered on a seldom-visited mountain top in southern Ecuador. A brief visit to the rocky outcrops of Cerro de Arcos in the southern province of El Oro produced a photographic record that rang a bell: a mysterious immature male clearly assignable to the genus Oreotrochilus, the hillstars, which included six species at the time. A few days later, an adult male was captured in another photo, and a week after that, several males and females were observed and a handful collected for scientific purposes.

Such an outstanding discovery needed a thorough assessment to understand the taxonomic status and phylogenetic relationships of the putative new species and their evolutionary implications for the genus Oreotrochilus. This genus is remarkable in being the one that reaches the highest elevations: records above 4,500 meters, with a mean of 3,600 meters above sea level. As such, these hummingbirds need a very special set of physiological and behavioral adaptations to feed on the scarce nectar resources available. One plant in particular is extremely important for the hillstars—the spiny-leaved Chuquiragua, with its fire-orange flowers.

The newly discovered hillstar of southern Ecuador is not an exception in its feeding associations. In fact, its geographic range seems to be shaped by the availability of Chuquiragua in a very restricted region between the geographic ranges of the Ecuadorian Hillstar, Oreotrochilus chimborazo, found in Ecuador and extreme southern Colombia, and the Green-headed Hillstar, Oreotrochilus stolzmanni, found in Peru and extreme southern Ecuador.

The latter species is likely the closest relative to the new species, sharing an overall plumage pattern and being very similar genetically. But a single striking characteristic sets them apart: the Green-headed Hillstar has a glittering lime-green throat patch, or gorget, whereas the gorget in the new species is a glittering deep blue. Given that gorgets are likely used in courtship displays by males, the strikingly different color suggests that reproductive isolation is effectively segregating these taxa.

Being extremely restricted in distribution, confined to a few mountain tops where habitat degradation is dramatic, the conservation status of this new hillstar seems critical. No conservation projects exist across its tiny range; on the contrary, the agricultural boundary is progressing, cattle graze free in the few natural grasslands that remain, burns are frequent every windy summer, and not a few mining concession cover the area. Urgent research and conservation actions are on the way, but there is little time left.

Newly Discovered Hummingbird Species Already Critically Endangered

AUK-18-58 F Sornoza - Copy

A male Blue-throated Hillstar. Photo credit: F. Sornoza-Molina

In 2017, researchers working in the Ecuadorian Andes stumbled across a previously unknown species of hummingbird—but as documented in a new study published in The Auk: Ornithological Advances, its small range, specialized habitat, and threats from human activity mean the newly described Blue-throated Hillstar is likely already critically endangered.

Hillstars are unusual among hummingbirds—they live in high-elevation habitats in the Andes and have special adaptations to cold temperatures. Francisco Sornoza-Molina of Ecuador’s Instituto Nacional de Biodiversida, first observed and photographed a previously unknown hillstar during fieldwork in southwest Ecuador in April 2017. After this first expedition, Sornoza-Molina engaged fellow researchers Juan Freile, Elisa Bonaccorso, Jonas Nilsson, and Niels Krabbe in the study of this possible new species, returning in May to capture specimens and confirm the finding. They dubbed the new species Oreotrochilus cyanolaemus, or the Blue-throated Hillstar, for its iridescent blue throat.

The Blue-throated Hillstar is found only along bush-lined creeks in an area of about 100 square kilometers, and the researchers estimate there are no more than 750 individuals, perhaps fewer than 500. Threats to its habitat include fire, grazing, and gold mining, and it meets the criteria to be considered critically endangered. “Complete support from national and international conservation agencies is needed in order to save this species,” says coauthor Francisco Sornoza-Molina. “The action plan for the conservation of this bird is creating a network of protected areas along its geographic range.”

“The hillstar hummingbirds occur in the most rugged, isolated, and inaccessible parts of the Andes, where they roost in caves, forage on the ground, and spend half their lives in hypothermic torpor, so the discovery of a new species in this group is incredibly exciting. This striking discovery confirms that life in the high Andes still holds many secrets to be revealed,” according to the University of New Mexico’s Christopher Witt, a hummingbird expert who wasn’t involved in the study. “The location is fitting for a new species of hillstar, because it’s a remote, high mountain range that is isolated and is sandwiched between the ranges of two other hillstar species. The authors did a thorough job comparing the new form to its relatives in every respect.”

A striking, critically endangered, new species of hillstar (Trochilidae: Oreotrochilus) from the southwestern Andes of Ecuador is available at

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. The Auk commenced publication in 1884 and in 2009 was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

Improving “Silvopastures” for Bird Conservation

CONDOR-18-1 B Tarbox Black-crowned Antshrike

Black-crowned Antshrikes are among the insectivorous birds that forage less efficiently in silvopasture habitat. Photo credit: B. Tarbox

The adoption of “silvopastures”—incorporating trees into pastureland—can provide habitat for forest bird species and improve connectivity in landscapes fragmented by agriculture. But how do silvopastures measure up to natural forest habitat? New research from The Condor: Ornithological Applications shows that birds in silvopasture forage less efficiently than those in forest fragments but offers suggestions for how silvopasture habitat could be improved.

The University of Florida’s Bryan Tarbox and his colleagues observed the foraging and flocking behavior of insect-eating birds in silvopastures on farms in the Colombian Andes between 2013 and 2015. They found that silvopastures were less structurally complex than forest fragments, with fewer and smaller trees, a sparser understory, and less diversity of tree species. Birds in silvopastures attacked insects less often, were less selective about where they foraged, and were less likely to join mixed-species flocks. Flock members attacked prey more frequently than solitary birds in forest fragments, but not in silvopastures, suggesting that something about silvopasture habitat negated the benefits of joining a flock.

The results show that silvopasture habitat could be improved by managing for higher tree species diversity and greater structural complexity, but that preserving natural forest fragments in agricultural landscapes is also crucial. “I hope people don’t get the impression that our results mean silvopastures aren’t a good idea,” says Tarbox. “The existing literature makes it clear that silvopastures are beneficial for biodiversity conservation. I think the big takeaway here is the importance of getting to the details of how specific land uses impact particular species or functional groups, so that we can figure out the best regional configurations of land use, given the competing needs of wildlife and agriculture.”

“Protected areas alone will be insufficient to conserve biodiversity at global scales. Instead, we must find ways to safeguard species and ecosystems while also sustaining human communities and livelihoods that depend upon local resources,” according to Cornell University’s Amanda Rodewald, an expert on bird responses to human land use who was not involved with the research. “In their study of insectivorous forest birds, Tarbox and his colleagues report that Andean silvopastures provided low quality foraging habitats and, as such, may fail to support resident and migratory birds as well as forest fragments. Fortunately, the study points to several strategies, such as planting preferred tree species and creating specialized microhabitats, that can be implemented at local and regional scales to improve suitability of silvopastoral habitats for birds.”

Foraging ecology and flocking behavior of insectivorous forest birds inform management of Andean silvopastures for conservation is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

Newly Identified African Bird Species Already in Trouble

CONDOR-18-28 J Engel L poenisis

A Mountain Sooty Boubou. Photo credit: J. Engel

Central Africa’s Albertine Rift region is a biodiversity hotspot consisting of a system of highlands that spans six countries. Recent studies have shown that the population of sooty bush-shrikes occupying the region’s mid-elevation forests is a distinct species, and new research from The Condor: Ornithological Applications reveals that this newly discovered species may already be endangered due to pressure from agricultural development.

The newly identified mid-elevation species has been dubbed Willard’s Sooty Boubou, as opposed to the previously recognized high-elevation species, the Mountain Sooty Boubou. The Field Museum’s Fabio Berzaghi (now with the CEA Laboratory for Sciences of Climate and Environment in France) and his colleagues used museum records and bird survey records to analyze the ecological niche occupied by each species, and their results confirm that there is very little overlap between the ranges of the two species—Willard’s Sooty Boubou is found at approximately 1200–1900 meters and the Mountain Sooty Boubou at 1800–3800 meters. In Burundi, Rwanda, and Uganda, 70% of the potential for Willard’s Sooty Boubou lies outside of protected areas and has been converted to agriculture, and the numbers for the Democratic Republic of Congo are only slightly better.

Willard’s Sooty Boubou joins several other imperiled bird species that depend on the region’s mid-elevation forests, which have been largely overlooked by conservation efforts. “The Albertine Rift is a crossroads of amazing biodiversity, dramatic and diverse landscapes, and heartbreaking social and political unrest. It goes from glaciers to volcanoes to plateaus to lakes, with a succession of vegetation types from high-elevation cloud forests to lowland tropical forests,” says Berzaghi. “It is home to gorillas and forest elephants as well as a high number of endemic animal and plant species. Unfortunately, much of the region has gone through never-ending conflicts, with very negative consequences for both humans and biodiversity, and conservation involving local populations is paramount.”

“This paper provides additional data in support of the recognition of Willard’s Sooty Boubou as a species distinct from Mountain Sooty Boubou. Clarification of the niche that Willard’s Sooty Boubou occupies, that of mid-elevation forests, distinct from the higher-elevation Mountain Sooty Boubou, is important, because these habitats are among the most heavily impacted in Africa from agriculture,” according to UC Berkeley’s Rauri Bowie, an expert on African birds who was not involved in the study. “Conservation agencies have an opportunity to move beyond taxonomic debate and use the models derived from this species to improve conservation outcomes for not only this species, but also a broad set of mid-elevation Albertine Rift endemic vertebrates through protection of mid-elevation forests that have received relatively little protection in comparison to high-elevation montane habitats.”

Comparative niche modeling of two bush-shrikes (Laniarius) and the conservation of mid-elevation Afromontane forests of the Albertine Rift is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

AUTHOR BLOG: “Bird-in-the-middle”—a mid-elevation tropical species stuck in limbo

Fabio Berzaghi & John Bates

Linked paper: Comparative niche modeling of two bush-shrikes (Laniarius) and the conservation of mid-elevation Afromontane forests of the Albertine Rift by F. Berzaghi, J.E. Engel, A.J. Plumptre, H. Mugabe, D. Kujirakwinja, S. Ayebare, and J.M. Bates, The Condor: Ornithological Applications 120:4, October 2018.


A search through the tropical forest literature for “mid-elevation forests” reveals relatively few results compared to a search for high-elevation or lowland forests, and looking at a map of protected areas and land cover in mountainous tropical regions makes it clear why. For example, in the African Albertine Rift, most national parks tend to be in high elevation areas where slopes are steep and land conversion for human use is more difficult. As we move down the slopes, the habitat starts degrading until we arrive in the lowlands, where almost no intact habitat remains, particularly on the eastern side of the Rift.

In 2010, Voelker et al. described a new species of bush-strike, the Willard’s Sooty Boubou (Laniarius willardi), and noticed that this species occurs at lower elevations than its sister species, the Mountain Sooty Boubou (Lanarius poensis). We were thus wondering how much habitat was left for this mid-elevation species, knowing that in this region lower-elevation forests are degraded or have been converted to agriculture. Using niche modeling and land cover data, we discovered that these two species of birds reside at different elevations across a small portion of montane Africa, overlapping only in part. Unfortunately, the habitat for L. willardi has been greatly reduced, because mid-elevation forests are outside protected areas and national parks. L. willardi may not be able to move to higher elevations, as its preferred environmental conditions are between 1200 and 1900 meters; a large portion of its suitable habitat is found in the Democratic Republic of the Congo’s Itombwe Plateau, technically a protected area but problematic to protect.

The plight of L. willardi is probably similar to that of many other mid- and low-elevation species in the area. Even though our results are not such good news for birds and other mid-elevation species in the region, we also want to highlight the importance of scientific collaborations with local researchers and conservation units. These collaborations help us define habitats and species in need of attention. Importantly, the authors of our study are a combination of Africans and non-Africans, with a range of research foci including ornithology and conservation but also niche modeling and bioinformatics. The data used in our study are based on both museum specimens (historical and modern) and modern field observations, which were carried out by teams that always included African students and scientists from the countries where the data were collected. Conservation can only be successful in the long run if in-country capacity for conservation science is developed around the world.

The discovery of L. willardi and its description were made possible through modern scientific collection during collaborations between local Albertine Rift ornithologists and the Field Museum. Data from such modern collections will help clarify lingering concerns in the taxonomic community (particularly Birdlife International and the IUCN) in regards to the status of these two species relative to other black boubous occurring far to the west in the Cameroonian Highlands. Work like this has great value, because it allows highlighting issues of conservation concern at both regional and local scales. Each region of the Albertine Rift has its own history and ongoing issues with deforestation, instability and protection. There is no “one size fits all” solution to conservation in the Albertine Rift, but this paper helps emphasize that there is regional expertise in the form of researchers and conservation professionals who will make a difference. Opportunities to work with international colleagues to combine conservation and science, as in this paper, will be instrumental in building efforts to protect the incredible biota of this wonderful region.

Mini Video Cameras Offer Peek at Hard-to-Observe Bird Behavior


Fledging behavior—when and why baby birds leave the nest—is something scientists know very little about. Rarely is someone watching a nest at just the right moment to see fledging happen. To get around this, the researchers behind a new study from The Auk: Ornithological Advances deployed miniature video cameras to monitor over 200 grassland bird nests in Alberta, North Dakota, Minnesota, and Wisconsin, and they found that fledglings’ decision-making process is more complex than anyone guessed.

Christine Ribic from the U.S. Geological Survey and her colleagues tested two competing hypotheses about fledglings’ decision making. Birds might leave the nest early in the day to maximize the amount of time they have to find a safe place to hide from predators before nightfall. Alternatively, once their siblings start to leave, the remaining birds might decide to stay in the nest longer to take advantage of reduced competition for the food their parents provide, resulting in spread-out fledging times. Video data analyzed by Ribic and her colleagues showed that the more siblings in a nest, the longer it took for all of them to fledge, consistent with the idea that some young may stay behind to take advantage of reduced competition after the first nestlings leave. Ribic and her co-authors discovered that 20% of nests took more than one day to completely finish fledging. Fledging behavior also varied between species and over the course of the breeding season, for reasons that remain unclear.

As they decide when to fledge, the nestlings of grassland birds are balancing two competing demands. On one hand, staying in the nest longer gives them more time to grow and develop before facing the risky outside world. On the other hand, predation risk might increase with time spent in the nest.

“It was exciting to see events naturally occurring in an area of avian biology where very little is known, and was only possible due to the use of video surveillance systems,” says Ribic. “It seems fledging is more complex than we previously thought. We were surprised by the span of time over which grassland bird species fledge, with some species starting to fledge in the early morning and others closer to noon, and by the frequency of fledgings that spanned multiple days.”

“Considerable research attention has focused on the breeding biology of birds, but until recently some events have been difficult to observe. Luckily, decreases in the size and cost of video equipment have allowed researchers to study these hard-to-observe events, such as the brief moments when a predator causes a nest to fail. This study took things a step further to begin exploring the point in time when young birds fledge from the nest,” adds the University of Illinois’s T.J. Benson, an expert of bird nesting behavior who was not involved in the study. “There are relatively few existing ideas for what influences the timing of nest departure by young birds, and Ribic and her colleagues put forth an interesting idea about the potential role of food availability in influencing fledging. Use of video technology to examine nest predation has become widespread, and this paper provides a great example of the other interesting aspects of breeding biology that can be examined in such studies.”

Diel fledging patterns among grassland passerines: Relative impacts of energetics and predation risk is available at

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. The Auk commenced publication in 1884 and in 2009 was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

AUTHOR BLOG: What time do baby birds leave home?

Christine Ribic

Linked paper: Diel fledging patterns among grassland passerines: Relative impacts of energetics and predation risk by C.A. Ribic, C.S. Ng, N. Koper, K. Ellison, P.J. Pietz, and D.J. Rugg, The Condor: Ornithological Applications 120:4, October 2018.

AUK-17-213 GRSP C Ribic-USGS

A Grasshopper Sparrow chick leaves its nest. Credit: C. Ribic, USGS

We know that human kids grow, mature, and gradually move towards a life that is independent of their parents’ home.  The same is true for baby birds: they also have to decide when the time is right to leave the nest and start on their journey to independence. This seems to involve a balancing act between making sure they are big and healthy enough to survive independently, while leaving the nest quickly to avoid predators. Nests are busy places where chicks beg for food and parents are constantly coming and going with food deliveries. All of this activity could easily draw predators to the nest! The timing of chicks leaving the nest (fledging) isn’t well understood, particularly for birds that live in grasslands, many of which are threatened or endangered due to habitat loss.

Our new research focused on a variety of grassland songbirds, such as meadowlarks, sparrows, and longspurs. We found that the time baby birds leave the nest has more to do with having enough food (energetics) than avoiding predators. This is surprising because research on birds nesting in shrubs says that risk of predation is the most important thing affecting when chicks leave the nest. This suggests that nests in grasslands (hidden on the ground with protective cover from surrounding grasses and a few low shrubs) face different risks than nests placed in shrubs.

We found that grassland chicks can start to leave anytime throughout the day and when they leave depends on what species they are. Some chicks, like Clay-colored Sparrow and Grasshopper Sparrow, usually left the nest in the early morning, while Eastern Meadowlark and Chestnut-collared Longspur left closer to mid-morning. But sometimes chicks delayed leaving until the afternoon, with their siblings waiting until the next day to depart. The time it takes for all the chicks to leave a nest can be several hours to more than a day! Maybe some chicks are taking advantage of their siblings’ early departures to get more food and attention from mom and dad before they finally leave, too.

Measuring fledging time can be tricky because chicks run in and out of the nest multiple times before leaving for good. We don’t know why they do this; maybe they are exploring their world and gaining confidence before leaving to brave the world outside their home. Remember these birds have only been alive for a week and a half or so!  Regardless, it’s a bit like kids going off for college but returning for school breaks … nestlings may leave and return repeatedly before fully fledging. Fledging is not nearly as simple as people think it is!

Understanding the fledging process allows us to better understand the biology of grassland birds. Learning about the pressures they face in their daily lives lets us understand what threats they face and how those threats may change as people alter grasslands. Grassland birds are declining more than birds of any other habitat type across North America. Research like this is part of understanding why they are declining and what we can do to help them recover.